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The wave forces acting on a floating hemisphere 
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The object of this paper is to derive the added mass and damping coefficients associated 
with the periodic motions of a floating hemisphere. Two physically distinct cases are 
considered; namely those of heave and surge, where these nautical terms refer re- 
spectively to a vertical or horizontal oscillation of the body. Computations have been 
done and the values found for the various force coefficients are presented in tabulated 
form. A brief derivation of the long- and short-wave asymptotics of these coefficients 
has also been included. 

1. Introduction 
This paper is concerned with the calculation of those wave forces which are exerted 

on a floating hemispherical body due to a forced oscillatory motion of the body in the 
free surface of an inviscid incompressible fluid. Two canonical problems are considered; 
namely those of ‘heave ’ and ‘ surge ’ motions, where these nautical terms are used to 
describe respectively a vertical or horizontal oscillation of the body. 

The ‘exact’ solution to these problems, involving the radiation of waves by the 
body, will be found by constructing an expansion for the velocity potential in terms 
of infinite series of spherical harmonics, from which the relevant forces may easily be 
calculated. The motivation for doing this is twofold. Firstly, the solutions to these 
problems are of interest in their own right, since we expect the general properties of 
their solutions to be typical of similar problems involving non-spherical (but smooth) 
body geometries. Secondly, the methods are ‘exact’ in the sense that the numerical 
computations can be done to a very high precision, and the results used to determine 
the accuracy achieved by other methods (e.g. integral-equation or finite-element 
techniques) that can be used to treat more general body geometries. We shall restrict 
our attention to the case in which the fluid is considered to have an infinite depth; 
the formulation of the corresponding problems involving finite uniform depths pre- 
sents few additional theoretical difficulties but considerably increases the analytical 
and computational complexity of the solutions. It should also be mentioned that the 
methods described in this paper could also be used to treat the physically distinct, but 
mathematically similar, problem of the diffraction of waves by a fixed hemisphere. 

The formulation of problems involving floating hemispheres is analogous to that 
for the corresponding two-dimensional problems involving circular cylinders, as 
pioneered by Ursell(i949); it  is perhaps for this reason that they have received com- 
paratively little attention in the literature. An account of the heaving-hemisphere 
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problem was first given by Havelock (1955), who used a method of solution similar 
to Ursell's earlier method for the circular cylinder. Havelock expressed the velocity 
potential, in terms of spherical polar co-ordinates, as the sum of a 'wave source' at 
the centre of the sphere together with an infinite series of ' wave-free' potentials; the 
velocity potential then satisfies all the conditions of the problem except that on the 
body surface, and this last condition is used to generate an infinite linear system of 
equations for the infinite number of unknowns appearing in the expansion of the 
potential. 

The methods of solution adopted in this paper are essentially equivalent to Have- 
lock's original treatment of the heaving-hemisphere problem, but a number of 
modifications have been made which considerably advance the analytical formulation 
of both the heave and surge problems anddso allow a more rigorous justification of 
some of the important steps in the analysis. Moreover, Havelock had to use numerical 
quadrature in order to evaluate certain of his integrals. In  contrast, it will be seen 
that all the integrals needed in the present work can be expressed in closed form in 
terms of elementary functions, and this must surely serve to increase the accuracy of 
the numerical calculations. In addition, this revised formulation immediately gives 
the long-wave asymptotic characteristics of the various force components, as we shall 
see in $53, 4. A brief derivation of the short-wave asymptotics will also be given, 
and the results for heave agree with those given by Davis (1971) and Rhodes-Robinson 
(1971). 

When presenting numerical results for the forces exerted on oscillating bodies it 
is usual to quote values for the added mass and damping coefficients, which measure 
respectively the components of force in phase with the acceleration and velocity of 
the body, and this convention will be followed here. The numerical results are presented 
in a tabulated form, rather than a graphical one, since this is perhaps the most useful 
format for those who would wish to compare the results produced by a more general 
method (e.g. integral equations) with the 'exact' results of the canonical problems 
as described here. For example, Kim (1965) has used an integral equation method to 
obtain numerical results for floating hemispheroids, in both the heave and surge 
modes. His results for the specific case of a hemisphere appear to be in good agreement 
with those presented in tables 1 and 2 of this paper. 

Spherical harmonics will be used extensively throughout this work, and so it will 
be sensible to use a consistent definition of the associated Legendre function Pf. We 
shall adopt the following definition of the quantity e(cosf?),  where m is a non- 
negative integer; 

(1.1) 
a" 

K?(cos 6 )  = ( - 1 )" (sin zm p , ( 4  Ix=co8 8 ,  

P being the hypergeometric function. We recall that when v is an integer e(z) is a 
Legendre polynomial in the variable x. Finally, we remark that, as a consequence of 
the definitions (1.1)' (1.2), 

P;(cosf?) = 0 (m > n 2 0). 
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2. The mathematical formulation of the problem 
To fix ideas, let us take spherical polar co-ordinates (R, 8, $) as shown in figure 1. 

The surface of the hemispherical body is given by R = a, 0 < 8 d in, 0 < $ < 2n. We 
assume that the surrounding fluid is inviscid, incompressible and irrotational, and 
this leads to a description of the fluid motion in terms of a velocity potential 

@(YR, 899; 71, 

where the superscript (m) corresponds to either a heaving motion of the body (m = 0) 
or a surging motion (m = 1). We will restrict our attention to time-harmonic oscilla- 
tions of the body, of angular frequency w, and we assume that the fluid motion has 
attained a ‘steady state’, in which case the time dependence of the problem can be 
removed by the introduction of a complex-valued potential qW(R, 8, $), where 

@ m ) ( ~ ,  e, $; 7 )  = W{+(~)(B,  e, $) e-sur}. (2.1) 

If we further restrict our attention to small oscillations of the body, then the potentials 
#(m) satisfy the usual conditions of linearized water-wave theory: 

(continuity) VeqSm) = 0 in the fluid, (2.2) 

(free surface) 

(radiation) 

( K + $ ) ~ w ) =  o on y = 0, 

as 

where r = Rain 0 and K = wa/g. For simplicity we can take the boundary conditions 
on the body surface to be 

where ( ) indicates that the value a t  R = a is to be taken. This last condition implies 
that the $-dependence of the problem can be removed by writing 

(2.6) 
and then solving for @m). 

The problem will initially be formulated in a way similar to Havelock’s original 
treatment of the heaving hemisphere, that is, by expressing #m) aa the sum of a 
‘ wave source ’ and an infinite series of ‘ wave-free ’ potentials. We can define a general- 
ized mth-order wave source Yom) by 

p n ) ( ~ ,  e, +) = ~ W ( R ,  8)  cos m$ 

where this expression itself satisfies the conditions (2.2), (2.3); and by indenting the 
contour of integration to run under the simple pole at  k = K we also satisfy the 
radiation condition (2.4), since it can be shown that 

Yhm) N K~+1(~)’exp{-Ky+i(Kr-+mn+&)}cosm$ as r + m  (2.8) 

15-2 
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FIGURE 1. Definition sketch. 

(i.e. Yhm) gives waves that travel radially outwards at infinity). Generalized wave-free 
potentials $im) are given by 

(see Thorne 1953), where for future convenience we have written y = cos19. These 
potentials also satisfy the conditions (2.2), (2.3) and, since they clearly do not generate 
any waves at infinity, the q5im) trivially satisfy the radiation condition (2.4). 

By analogy with Havelock's treatment of the heaving hemisphere problem (our 
m = 0), we consider an expansion of the form 

(2.10) 

By construction, $(m) satisfies all the conditions of the problem except that on the 
body itself; to satisfy this last condition we must have 

Havelock now multiplies both sides of (2.1 1) by 

(8 = l ,2 ,3 ,  ...) 

and integrates with respect to ,u over 0 < y < 1 ; this generates an infinite linear sys-tem 
of equations for the unknowns {qim)}s>o. 

The main difficulty with this approach is that we need to evaluate integrals like 

(2.12) 

for s = m, m + 1, . . , . Havelock tackled this problem by first finding an expression for 
the source term 
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in terms of the Bessel function Yo and the Struve function Ho (see his equation (24)) 
and then approximating the values of the integrals (2.12) by quadrature methods, but 
it is unlikely that this approach is suitable for large values of s because of the oscillatory 
nature of the Legendre function c. Nevertheless, it is widely accepted that Havelock's 
graphical results (for the added mass and damping coefficients of a heaving hemisphere) 
are qualitatively correct, and the accuracy of his calculations is to be commended, 
since he does not appear to have used an electronic computer. Havelock's calculations 
were repeated by Barakat (1962)' but the results presented by the latter author seem 
to be in error. 

Havelock only considered the case m = 0; the generalization of his method for any 
m = 0,1,2,  ... has recently been given by Greenhow (1980), in his investigation of 
interacting spherical wave-power devices. (Greenhow presented graphical results for 
the variation of the added-mass and damping coefficients of heaving and surging 
hemispheres over the range 0 < K a  < 3.0; the author's own calculation of these 
quantities extends as far as Ka = 10.0, see tables 1 and 2.) 

There are a number of modifications that can be made to Havelock's method 
which considerably improve the analytical formulation of the problem and greatly 
assist the numerical calculation of the quantities of interest. For clarity it is best to 
treat the heave and surge problems separately, but before doing so we will need the 
following lemma. 

LEMMA. The wave source Yirn), dejned to be 

can be expanded in terms of spherical harmonics as 

and the injnite series converge for 0 < R < co. 

For the proof of this lemma, see appendix A. 
This generalizes an earlier result of Ursell(l963, 5 3), who considered the particular 

In  the following work we will employ the notation 
case m = 0. 

throughout. 
J O  
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3. The heaving hemisphere 

used by Ursell(l949, 1963). We consider an expansion for q5(O) of the form 
We will now adopt a slightly different formulation of the problem, similar to that 

(3.1) 

where the (complex) constants C(O) and {pf"}t>l are to be chosen so that the boundary 
condition on R = a is satisfied exactly, viz 

($0) = C(O)a2 Yp( 0") + 5 p p  a"tf$lP'], 
t=l 

This can be rewritten as 

(Notice that we have made the tacit assumption that C(O) is non-zero - this point will 
be discussed later on.) Henceforth we will omit the superscript (0). 

Let us now integrate (3.2) with respect to p over 0 < p < 1 : this gives 
f l  W 

*c-1= P(w,Ka)dw-(Ku) I: ptI{O,2t-1;0}, Jb t=l 

where we have used the orthogonality property 

88, 1{29,2t; O }  = - 
4s+ 1' 

We can now substitute this expression for C-l into (3.2), and it follows that 

(3.4) 

1 

0 
Gyp, Ka) = F(p ,  Ka) - 2 P 1 ( 4  F(w, Ku) dw. (3.6) 

To solve this equation we multiply each side of (3.5) by successive elements of the 
complete set {Pa(,u)}s21 and integrate over 0 < p < 1. By using the result (3.4) we 
find that the unknowns {pt}t21 satisfy the infinite linear system of equations 

where 

Md = 29+1 4s + {1{29,2t - 1 ; O }  - 21{2s, 1 ; O}  1{0,2t - 1 ; O } }  (3.8) 
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(and so is independent of Ku) and 

(and so is dependent on Ka) .  Furthermore, by using the preceding lemma we deduce 
that for the purpose of computation d, can be rewritten as 

{J{2s, Ku} - 2J{O, Ka}1{2s, 1; 0}}, (3.10) 
4s+ 1 
2s+ 1 

a, = - 
where 

( -Ka)n 
+ ( W  x {n{$(n) + mi - In (Ka)} - 1) I{a, n;  0). (3.1 1) 

n-0 n! 

In  appendix B it is shown that any integral of the form I{a, v; m} can be expressed 
in closed form in terms of elementary functions; this must surely be an improvement 
on Havelock's original treatment of this problem in which he had to use numerical 
quadrature in order to  evaluate certain of his integrals. Another feature of this approach 
is that the elements N, are 'real' numbers, allowing the ' complex' system of equations 
(3.7) to be decoupled into two 'real' systems of equations. 

Systems of the form (3.7) have a theory analogous to the Fredholm theory of integral 
equations of the second kind. If the abstract theory of compact operators is applied to 
the Hilbert space L, we obtain the latter theory; if to the Hilbert space 1, we obtain 
the following version of the Fredholm alternative: 

TEEOREM (see Riesz 1913, p .  36).  POT the system 

x,+ c XtA,, = c, (s = 1,2,3, ...) 
t = 1  

in which 

x 1 % 1 2  < 00, x c IA,I2 < 
,=l s = l t = l  

then either det {S,, + ASt} $. 0 and for given {c,} there existsaunique solution{x,},such that 

x < 00, 

or det {ast + &} = 0 and a solution {x,} only exists where the vector {c,} is orthogonal 
to all the solutions of the homogeneous transposed system. 

To obtain a bound on the {d,} we need the asymptotic properties of the integrals 

I{%, 1; O},  J{2s,Ka} as s + 00, 

and these can be found from the results given in appendix B. It can be shown that 
the d,  are O(s-4) aa s -+ co, and so 

m 

s=l  

m 

s= l  
I; 8'Idsl2 < 00, 
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which is in excess of the required condition. The results of appendix B can also be 
used to show that 

m m  

s= l l= l  
r, I; 1Mst12 < 00, 

and providing that the Fredholm determinant of the system (3.7) does not vanisht 
we are assured of the existence of a solution set {ps)s21, such that 

m 

I; 1%12 < 
s=l 

This aspect of the problem has been studied by Ursell (unpublished), who showed 
that it is possible to establish the stronger result 

: qPs12 < a, 
s=1 

from which it can be shown that 

ps  = O(s-b) as s-too. 

(To see how these results are obtained we need only refer to the corresponding proof 
for the surging hemisphere, which will be given in some detail in 8 4 . )  The significance 
of this last result is that it  shows the series for the potential (3.1) and the velocities 
(3.2) to be absolutely convergent for R 2 a, and so justifies all the assumptions, 
implicit in the analysis, that were needed to derive (3.5). 

If we assume that the system (3.7) has now been solved to yield the solution set 
{ P ~ } ~ , ~ ,  then the remaining undetermined coefficient C is given immediately by 

/ m \ -1 

(3.12) 

and the velocity potential is now fully determined. 

velocity potential by 
In a linearized theory, the excess pressure p exerted in the fluid is related to the 

ao 
a7 p = -p -  (p  = fluid density), 

and it follows that the vertical force experienced by the body is P@), where 

JYO) = g { f ( O )  e-iuT}, (3.13) 

(3.14) 

We again emphasize that all the integrals needed to compute the quantity f(O) are 
known analytically. If we write the vertical force P(O) as 

P(O) = #naSpw(B(O) COB wr - A(O)sin w ~ }  (3.15) 

then Ace) and B C O )  are respectively the non-dimensional added-mass and damping 
coefficients associated with the heaving motion of the body. 

= 0 can occur, at most, at a discrete set of values of 
Ka at which the radiated-wave amplitude vanishes at infinit.y ; this also means that the damping 
coefficient, and hence C, vanish at these ‘exceptional valuea’ of Ka. At such a value of Ka, $ 
would have an expansion in terms of wave-free potentials only : the source term must be absent. 
I have found no such exceptional valuea during my computations. 

t The caae in which det {a,,+ (Ka) 
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To facilitate the numerical solution of the problem, the system (3.7) was truncated 
to a finite N x N system of equations, which was then solved exactly, using a Gaussian 
elimination procedure. By these means we obtain approximations to the values of the 
quantities {ps}lGsGJv and C, and hence approximations to the added-maas and damping 
coefficients. The equations (3.7) are clearly 'diagonally dominant' for small values of 
Kuand we expect that solutions can be most accurately obtained in this range, although 
the numerical work suggests that by taking a suitably large truncated system, say 
N = 50, the method gives answers accurate to 4 decimal places for wavenumbers in 
the range 0 6 Ku 5 10; in comparison, Havelock used only an 8 x 8 system of equa- 
tions. The results of the calculations are shown in table l. 

The special form of the system (3.7) makes it possible to predict the asymptotic 
values of the coefficients {ps}s21 in the long-wave limit Ku --f 0, since it is clear that 

ps = ds[ 1 + O{Ka}] as Ku +- 0. 

Now (3.10), and (3.11) give expressions for the {ds}s>l in terms of the functions 

(Ka)n, (Ka)nln(Ka) (n  = 0,1,2, ...), 

and by a careful analysis we can show that 

The asymptotic form of the coefficient C is now given by (3.12); we find that 

By using these results for {ps}s>l and C, and the lemma of $2, we can now go on to 
deduce the asymptotic form offo), and hence that of A@) and Bo), as Ka +- 0; the 
analysis is straightforward but laborious, and we shall merely state the important 
results that the long-wave asymptotic behaviours of the added-mass and damping 
coefficients are given by 

as Ku --f 0, 
A(o) = L - ~ ( R U )  In (Ku) + O{Ru}, 

Bo) = &(Ku) + ~ { ( K U ) ~ }  
where 

L = 3 Z -  ao 4e+1[1{28,1;O}]2 = 0.830951 ... . 
8=0 28 + 1 

(3.16) 

(3.17) 

(3.18) 

This evaluation of the constant L agrees with that given by Ursell(l963, 8 4). 
The behaviour of the added-mass coefficient at small values of Ku has been the 

subject of some debate. Havelock's original calculations show Ato) to be an initially 
increasing function of Ku, whereaa Barakat (1962) claimed that A(O) decreased from 
its limiting value ( = L) as Ka increases from zero. The result (3.16) shows that Have- 
lock was correct. (Barakat's error was noted by Kotik & Mangulis (1962), who used 
the Kramers-Kronig relations to deduce long-wave asymptotics for the added masses 
of quite general bodies.) 
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Added mass Damping 
K a  A(0) B(0) 

0 0-8310 0 
0.05 0.8764 0.1036 
0.1 0.8627 0.1816 
0.2 0.7938 0.2793 
0.3 0.7157 0.3254 
0.4 0.6452 0-3410 
0.5 0.5861 0.3391 
0.6 0-5381 0-3271 
0.7 0.4999 0.3098 
0.8 0.4698 0.2899 
0.9 0-4464 0,2691 
1.0 0.4284 0.2484 
1.2 0.4047 0-2096 
1.4 0-3924 0.1756 
1.6 0.3871 0.1469 
1.8 0.3864 0,1229 
2.0 0.3884 0.1031 
2-5 0.3988 0.0674 
3.0 0.41 11 0.0452 
4.0 0-4322 0.02 19 
5-0 0-4471 0*0116 
6.0 0.4574 0.0066 
7.0 0.4647 0.0040 
8.0 0.4700 0.0026 
9.0 0.4740 0.0017 

10.0 0.4771 0.0012 

TABLE 1. The added-mass and damping coefficients of a heaving hemisphere 
a3 0.5 0 

4. The surging hemisphere 
The formulation of this problem follows along lines similar to those for heave 

motions, discussed previously, and so only a brief account need be given. The velocity 

where this satisfies all the conditions of the problem except that on the body surface, 
R = a, To satisfy this last condition we require that the coefficients C(’) and {pil)}t>l 
satisfy the equation 

00 

{C(l)}-l Pi(& = F(”(p, Ka) - p p )  ( ( K a )  Pi t@) + 2(t + 1)  Pit+&)) 
t = l  

where 

Henceforth, we will omit the superscript (1). 

both sides of the equation by Pi(,u) and integrate over 0 < /I < 1; this gives 
We need to eliminate the unknown constant C from (4.2), and to do this we multiply 
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where we have used the orthogonality result 

Substituting this expression for C back into (4.2), we deduce that the {pt}t>l satisfy 
the equation 

(0 6 p 6 11, (4.6) 
where 

G(p, Ka)  = F(p,  Ka)  - #P:(p)sl F(v, Ku) P:(v) dv. 
0 

(4.7) 

To generate an infinite linear system of equations for the {pt}t>l we successively 
multiply both sides of (4.6) by Pi,+l(p) (s = 1,2,3, .. .) and integrate over 0 6 p 6 1. 
Using ( 4 4 ,  we find that 

where 

(and so is independent of Ka) and 

(4.10) 

(and so is dependent on Ka). As before, we can use the lemma of 5 2 to show that for 
the purposes of numerical computations d, can be more usefully written as 

(4.1 1 )  

(4.12) 
OD ( - K a ) n  

n=l (n+ I ) !  +(Ka)' x {n{$(n+ l )+ni- ln  (Ka)}-  l } I {u ,n;  I}. 

t By using the relation 
(v-m) 1 

[ u + m ) .  
P;m(p) = - ; T ( P )  

w0 can deduce that 

where, by using the results in appendix €3, the above limit can bo rvaluated analytically. 
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We will now study the system of equations (4.8) in some detail. By using the ana- 
lytical expressions for the values of the integrals 1{2s+ l, v ;  l}, given in appendix B, 
it can be shown that 

1 ~ { 2 s +  1,Ku>l < E- for s 2 I, 
s t  

where a is a constant that depends on Ku, and so it is clear from (4.11) that d, is 
O(s-4) as s --f 00, giving 

2 s"ds12 c co. (4.13) 
m 

s = 1  

It is also shown in appendix R that 

from which it can be deduced that 

for s,t B 1, 
sa t4 

11Ps + 1, 2t; '>I  < P (s + t )  ps - 2t + 1 I 
where P is a positive constant, which can be determined. It follows from (4.9) that 
lMxtl has an upper bound of the form 

(4.14) 

If we try a direct application of the 1, theory, as stated in $3, we would need to establish 
the convergence of the double series X X IMst12, and the result (4.14) is insufficient for 
this purpose. However, if we make the substitution 

Ps = s-tqs 
in (4.8)' we obtain a new system of equations for the {qs}s>l, namely 

q,+ ( x ~ )  1~ qtStt-tius, = stas 
m 

(8 = i , 2 ,3 ,  ...I, (4.15) 
t = 1  

and from (4.14) we have 
m 8 2  0 0 0 0  m w  

x x Istt-wt12 < P2 x x = P2 ;I: s2T(s), (4.16) 
s=l t=l  8 = 1 t = 1 tZ(s + t)2 (2s - 2t + l ) Z  8= 1 

where 

(4.17) 

Now, let [as] denote the greatest integer which is such that [gs] Q 4s. The function 
T(s)  can be written schematically as 

If81 &I 

1 m 

T(s)  = t?l t2(s  + t )2  (2s - 2t + 1)2' 

T(s)  = E + x + : 
t=1 rfsl rqs1' 

and it can be shown that 

@ 1 " l  l W 1  2 x c - z - < - x - < -  
I ~ I  s4rp1t2 s 4 t = l t a  s4' 
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where A is a (determinable) positive constant. Hence 

(4.18) 

The 1, theory for a system of equations like (4.15), and for values of K a  for whicht 

det {Sst + (Ka)  sft-#M&) $. 0, 

now gives that there exists a solution {qs}s21, where 

: l q s I 2  < *. 
s = 1  

We have thus established the result 
m 

(4.19) 

By reference to (4.15) we see that 

and so 

(Schwarz's inequality) 

= O(s-8) by (4.14) and (4.19). 

This last result shows that the series for the potential and for the fluid velocities are 
absolutely convergent for R z a, and so justifies all the assumptions implicit in the 
preceding analysis. 

The computational techniques used to obtain approximate numerical solutions to 
the heaving-hemisphere problem can also be used to treat the surging-hemisphere 
problem, since both of these can ultimately be reduced to the problem of finding the 
solution to an infinite system of linear equations in an infinite number of unknowns. 
Once approximations to the values of {p$l)}t>l and C(l) have been obtained, the hori- 
zontal force F(') experienced by the body can be calculated from #(l) in the usual way. 
We can again describe the force F(1) in terms of dimensionless coefficients A(1), B'): 

F(l) = @raspw{Bcl) cos WT - A(')sin m}, (4.20) 

where A(') and B1) are respectively the non-dimensional added-mass and damping 
coefficients associated with the surging motion of the hemisphere. Table 2 gives values 
for these coefficients over the range 0 < K a  < 10, and the calculations are believed to 
be accurate to 4 places of decimals. By an argument similar to that outlined at the 
end of 5 3, we can show that in the long-wave limit Ka -+ 0 the added-mass and damping 
coefficients are given by 

as Ka. -+ 0. 
A(l) = 8 + &Ka) + O{(Ka),}, 
B1) = 97r(Ka)S+O{(Ka)4} 

(4.21) 

(4.22) 

t Again, no 'exceptional mliios' of Kn \\'rip eiicoiintered diiring the computations. 
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Added mass Damping 
Ka A(’) B(1) 

0 0.5 0 
0.1 0.5223 0.001 1 
0.2 0.5515 0.0082 
0-3 0.5848 0.0255 
0.4 0.6175 0.0557 
0.5 0.6439 0.0987 
0.6 0.6586 0.1516 
0.7 0.6682 0.2092 
0.8 0.6421 0.2653 
0.9 0.6127 0.3145 
1.0 0.5740 0.3535 
1.2 0.4860 0.3978 
1.4 0.4038 0.406 1 
1.6 0.3371 0.3929 
1.8 0-2866 0.3695 
2.0 0.2493 0.3424 
2.5 0.1961 0.2769 
3.0 0.1720 0,2237 
3 4  0.1634 0.1826 
4.0 0.1620 0.151 1 
4.5 0.1641 0-1266 
5.0 0-1679 0.1073 
6.0 0.1772 0.0794 
7.0 0.1865 0.0608 
8.0 0.1949 0.0479 
9.0 0.2022 0.0386 

10.0 0.2085 0.0317 
00 0.2732 0 

TABLE 2. The added-mass and damping coefficients of a surging hemisphere 

5. Short-wave asymptotics of the added-mass and damping coefficients 
In the preceding work we have expressed the velocity potentials associated with 

the heave and surge motions of the floating hemisphere in terms of infinite series of 
spherical harmonics, and we have seen that both problems ultimately reduce to that 
of finding the solution to an infinite linear system of equations in an infinite number of 
unknowns. This approach is found to be very successful for slow oscillations of the 
body (i.e. small Ku), but for high frequencies these infinite systems of equations are 
‘ill-conditioned’ in the sense that as Ku increases we must solve bigger and bigger 
finite (i.e. truncated) systems of equations in order to calculate the added-mass and 
damping coefficients to a specified accuracy. However, computational experience 
suggests that if we solve a 50 x 50 system of equations we can obtain results accurate 
to at least 4 decimal places, for wavenumbers up to Ku z 10. 

For large values of Ku it is more appropriate to formulate the problems in terms of 
integral equations whose kernels become ‘small’ as Ku --f 00; a description of this 
method, as applied to a floating cylinder, has been given in a classical paper by Ursell 
(1  953). This procedure has been used by Davis (197 1) to give short-wave asymptotic 
results for the heaving hemisphere, and a similar approach could be adopted for the 
surge case although a rigoroils treatment would involve a significant amount of 
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mathematical labour; for this reason we will give an alternative derivation of these 
results, based on arguments which are physically plausible rather than mathematically 
precise. It will again be useful to treat heave and surge motions separately. 

Heave 
We follow an argument given by Ursell (1954) in connection with the motion of a 
floating cylinder. As Ka -f 00 the free-surface condition tends formally to d = 0, and 
we therefore expect that the heave potential qV0) tends to the limit 

p)= - - - P ( p )  1 a3 (p = cos8) as Ka-fco ,  
2R2 ' 

everywhere except in a thin surface layer of thickness O( 1 / K )  where there are waves. 
With this in mind, let us define a potential A(O) by 

where the term in the brackets is the wave-free potential 29i0)/K - see ( 2 . 9 ~ ) .  The 
boundary condition on the sphere is 

and so from (5.1) we must have 

(Z) = -3P2(p) (0 Q p Q 1 )  

x 3 near ,u = 0, the free surface. 

We have thus transformed the problem into one in which the radial fluid velocity does 
not vanish on the free surface. 

To calculate the damping coefficient of the heaving hemisphere we need only 
consider the waves generated by the term (Ka)-lA(O). For large Ku, these waves are 
confined to a thin surface layer, and the result (5.2) suggests that, to a first approxi- 
mation, these resemble the waves generated by a vertical circular cylinder of radius a 
oscillating with a radial velocity of magnitude Q near the free surface. The latter 
problem has been solved by Havelock (1929, $6)  and by reference to his work we can 
show that 

- 3 Hi1) (Kr )  
-ze-Kur as r + m .  

(l)( Ka) (5.3) 

When Kr and Ka are both large we have, from the asymptotic expression for the 
Hankel function HA1), 
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and this agrees with the result given by Leppington (1973), who used the method of 
matched asymptotic expansions. Since 

1 9'0) rv 

Ka . as 

we deduce that the (time-averaged) energy flux at  infinity is asymptotic to 

9nw3 
as Ka 3 00. p2(Ka)4 

Now, the (time-averaged) rate of work of the body on the fluid is 

&ra3poB(O), (5.6) 

where B0) is the dimensionless damping coefficient of the heaving hemisphere; the 
quantities (5.5) and (5.6) must be equal, and so we deduce the asymptotic result 

To find the short-wave behaviour of the added-mass coefficient we again study the 
potential A(o). As Ka -+ 00 it  seems reasonable to assume that A@) tends to a limiting 
value that corresponds to the boundary condition = 0 on y = 0, except in a thin 
surface layer where the pressure exerted on the body will contribute little to the total 
vertical force; we can thus ignore the effect of this surface discrepancy. We need to 
find a potential A(O) such that 

A@)= 0 on p =  0, and (g) = -3P,(p) over 0 < p  Q 1. 

Let us try 

by construction this satisfies the condition at p = 0, and if we take 

3(4n- 1) 
2n cn = 1{2n - 1,2; O} 

we also satisfy the condition over the body surface, 0 < p < 1. We can now deduce 
from the original expression for qS0) in (5.1) that the added mass of the body is given by 

i.e. Ace, N _-_- ' as Ka+co. 
2 l 6 K a  

The results (5.7), (5.8) were fht  stated by Ursell(1957), and subsequently re-derived 
by Davis (1971) and Rhodes-Robinson (1971). 
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Surge 

To derive the short-wave asymptotics of the surge-damping coefficient B1) we follow 
almost the same argument as before; in surge, the normal velocity on the hemisphere 
is 

(g) = Pi@) cos $ 

z -cos$ near p = 0, the free surface. 

(Notice that in this case the radial velocity does not vanish everywhere on the free 
surface, and so no preliminary transformation is needed.) To a first approximation 
we expect that, at a distance from the body, the waves due to qY1) resemble those due 
to an oscillating vertical cylinder of radius a, whose radial velocity near the free surface 
is given by - cos $. By analogy with Havelock (1929) we deduce that 

The argument now proceeds exactly as before, and we need only state the result: 

To find the short-wave behaviour of the added-mass coefficient A(’) we might con- 
sider an expansion of the form 

a0 

$(l) = a2n+2#{an+ (Ka)-lP,+ (Ka)-2yn+ ...}, 
n= 1 

(5.10) 

where $2) is the wave-free potential: 

By construction, qS1) satisfies the free-surface condition exactly, and to satisfy the 
boundary condition on the body we must have 

(0 < p < 1).  (5.11) 

To solve this equation we can multiply both sides by Pi,@) (m = 1 ,2 ,  . ..), and inte- 
grate over 0 < p < 1 ; we would deduce that by taking 

1 
a n = - -  1{2n, 1 ;  l }  [1{2n, 2n; 1}]-1, (5.12) 

2n+ 1 

we satisfy the boundary condition (5.11) to within O{(Ka)-l}, and that, by taking 

we satisfy the boundary condition (5.1 1 )  to within O { ( K U ) - ~ } .  
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If we now use these results to calculate the added-mass coefficient we would find that 

(5.14) A(') N c, - Fa c2 as K a + - o o ,  

where 

(5.15) 

(5.16) 
3 "  
2 n = 1  

C2 = +- I; &J{2n, 1; 1) .  

The terms in the series for C, decay as l/na, and computations have shown that 
C, = 0.273239 ... . The series for C2 also converges, but here the terms only decay as 
fast as (logn)/ne and the result (5.16) is of little use computationally. 

I wish to emphasize that this derivation of the asymptotic form of A(') is suggestive 
rather than conclusive, although I do believe the result (5.14) to be correct. 

I am grateful to Professor F. Ursell, F.R.S., for allowing me to refer to private 
notes on the subject of the heaving hemisphere, and also for many helpful discussions 
during the preparation of this paper. This work was supported by a C.A.S.E. award 
from the Science Research Council, in conjunction with the National Maritime 
Institute. 

Appendix A 
The wave source defined in $2, can be written as the sum of two terms, 

y p  = y ( m )  y ( m )  
0 , l  + 0,2, 

where 
00 k m t l  - Km+l 

k - K  e-ku Jm(kr) dk ,  

00 Kmtl 
= cos CK eFkV Jm(kr) dk. 

= X knKm-n 

By noting that 
km+l-Km+l m 

k - K  n=O 
and using the identity 

c o ~ m l l . ~ ~ ~ k ~ e - ~ ~ J ~ ( k r ) d k  = ( -  l)m(n+m)!&(p) P - m  (p = cosd), (A 5 )  

it is easy to deduce that 

An expansion for the potential Y62 can be found in a way similar to that used by 
Ursell (1963, $3). We first use the identity 
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to rewrite (A 3)  as 

where 
6 = K(y+ircosp), y = Rcos8, r = Rsin8. 

Now consider the following Laplace transform: 

= [ I r i + l n s ] ( l + s ) - '  
OD 

But 

and so it follows that 

Returning to (A 8), we can use the result 

1; cos mpSydp = cos mp(cos B + i sin 8 cosp)'dp (KR)Y 

= (-i)m277- u !  (KR)Ye(P) (A 11) (u+m)! 

(see Erdelyi et al. 1953, 3.7.25) to deduce that 

This completes the expansion of !Pim) in terms of spherical harmonics. 

Appendix B 
We will now derive analytic expressions for the values of the integral 

I (u,a;m) ' p % ) E ( P ) d P  (m = 0 ,1 ,2 ,  ... 1. 

The associated Legendre function e@) satisfies the equation 
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and using this it is a trivial matter to deduce that 

If we now use the results 

it follows that 

22m+l 1 
I {  v, u; m} = - {A(v ,  a; m )  sin [&n(v+ m)]  cos [&n(a+ m)]  

- A (v, v ;  m) cos [in( v + m)]  sin [ &(a + m)]},  (B 8) 
n ( v - a ) ( v + a + l )  

where 
(tv + &m) ! (+a + #m - $1 ! 
( f v  - Qm - &)! (&a - am)! a 

A(v ,  a; m) = 

This is a generalization of the result stated by Erdblyi et al. (1953,3.12.15) for the case 
m = 0. 

As might be expected, the result (B 8) simplifies greatly for certain 'special' choices 
of the variables v, c, m. For the problem of the floating hemisphere we need only 
consider the cases m = 0 and m = 1, and we note the following useful results. 

m = 0: 

(4v- cos tnv, (B 11)  
2 ( t  + g)! 1 
n t! (Y--2t--l)(V+2t+2) (Sv)! I{v,2t+1;0} = - ( -1 ) t - -  

( -  1)5+t+1 (%)! (2t+ l ) !  1 
1{29, 2t+ l;O} = 45+t (2s- 2t- 1 )  (2s+ 2t+ 2){9! t!}2' 

and the orthogonality properties 

(B 13) 
1 

st49+ 1' 
1{29,2t; O} = 6 - 

m =  1:  

(iv)! sin &nu, (B 15) 
8 ( t  + A)! t 
71 t !  (v-2t)(v+2t+1)(4v-4)!  

I{v, 2t; l} = ( -  l)t-- 
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( -  l)*+t t (2 s+  l ) !  (2 t+  l)! 1 
+ 1, 2t; 1) = ps+t (2s  - 2t + 1 ) (8 + t + 1 )  {s! t ! } 2 '  

and the orthogonality properties 

29(2s+ 1) 
4 s + 1  

1 { 2 ~ ,  2t;  I }  = 8, 
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